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Abstract. Different geometric formulations are obtained for a generalized Lagrange equation
non-reducible to normal form and encompassing non-conservative dynamics.

1. Introduction

Implicit differential equations arise quite naturally in the geometrical setting of conservative
mechanics, since equations of motion are deduced from variational principles and, as such,
they do not exhibit the explicit (or normal) form of vector fields on some carrier space [2].

On the other hand, the vector field approach is always adopted when dealing
geometrically with non-conservative mechanics [16, 1, 6, 3].

As a matter of fact, differential equations are all implicit in principle, and in no way
is their basic physical meaning related to their being reducible or non-reducible to explicit
form.

So conceptual clarity would require a unified implicit formulation of conservative and
non-conservative mechanics.

According to Tulczyjew [17-19, 20, 22, 14], the dynamics of a conservative mechanical
system, described by a Lagrangianon the tangent bundI& Q of a configuration space
0, is governed by the implicit differential equation on cotangent bufidl@ generated by
dL, i.e. the submanifold of T*Q obtained fromim(dL) C T*T Q through the canonical
diffeomorphism ofT*T Q onto TT*Q.

In a previous paper [2], such an equation has been intrinsically related to the implicit
Euler-Lagrange equation deduced from Hamilton’s variational principle.

In the present paper, the whole theory is embodied in a geometrical treatment concerning
a more general kind of submanifold &fT*Q, which encompasses the dynamics of non-
conservative mechanical systems as well.

The generalized Lagrange equatiaimder consideration is a submanifald c T7*Q
generated by any (global or local) 1-forfnon T Q.

The crucial role in analysing is played by the Legendre morphism associated with
(generalizing that associated with a Lagrangian [1]), which allows us to show (section 3)
that D behaves like a second-order equation, in the sense that its integral curZe&gdon
turn out to be completely determined by their own projections @hto
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This is the central property, which leads us to recognize (section 4)xhHatactually
equivalent to (i.e. has the same solution curvegiras) a genuine second-order implicit
equation £ (i.e. a submanifold of the second tangent bundle@)f The integrability
algorithm [15] is applied to both equations, and their respective integrable parts and
constraint subsets are related to one another.

The equationE is then shown (section 5) to fit in with the geometric framework of
linearly constrained systems developed in [11-13]. Hence we obtain a regularity (or hyper-
regularity) condition orf, expressed by the Legendre morphism being a local (or global)
diffeomorphism, under whiclf (and D) can be put in normal form.

After an intrinsic analysis of the above geometrical setting, the equdida also
given (section 6) a presymplectic formulation, generalizing the one of implicit Lagrangian
dynamics [9, 10, 23, 2].

The latter, extended in such a way as to include non-conservative dynamics, is then
recovered (section 7) under a suitable hypothesig.on

Some examples (featuring a degenerate relativistic Lagrangian coupled with an
electromagnetic field, a linear Lagrangian and a generalized Rayleigh dissipation function,
respectively) are given in section 8.

The coordinate expressions of the main points of the above theory are finally given in
section 9.

Further developments including momentum mapping and Noether theorems, as well as
an extension of our scheme leading to a unified approach to constrained mechanical systems
as implicit differential equations, will be the object of forthcoming papers.

2. Preliminaries

Here is a list of the main geometric tools we shall adopt in what follows.

(). Let M be a smooth manifold.

The tangent and cotangent bundle projections antwill be denoted byty, : TM — M
andmy : T*M — M, respectively.

If ¥ : M — N is a smooth mappindgl'yy : TM — TN is the tangent mapping af,
andy* : AN — AM the pull-back of the exterior algebra 81 into that of N by .

The Liouville 1-form onT*M will be denoted bydy : T*M — T*T*M : & —
Oy(E) =0 TETL'M.

(ii). The basictangent derivationof AM (see [22, 14]) are the following.

Letiy : AM — AT M be thery-derivation of degree-1 which vanishes o°M and
acts on any) € A'M by putting, for anyx € TM, (i70)(x) := i.0 = (x|8) (where the
inner producti, is defined by the usual pairing|-) between vectors and forms). Hence it
follows thati; acts on anyw € A?M by (irw)(x) ‘= icw o Ty Ty.

From iy one also obtains a,-derivation of degree 0 given byr = ird + dir
(whered denotes the exterior derivative of bothwf and AT M) and satisfying, for any
VM — N, dry* = (Ty)*dr.

(ii). The key role in thegeometry of a tangent bundl®? = T Q (see [4, 5, 22]) is
played by the vertical liftingy : TQ xo TQ — TT Q, whose restriction, to the fibre
{v} x T,Q = T,Q over anyv € TQ (with ¢ := 7o (v)) maps isomorphicallyr, 0 onto its
own tangent space at
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On the one handy transforms the tangent mapping of into the almost-tangent
structureS : TTQ — TT Q defined, for anw € T Q, by S, := S}, ,, = v, 0 Ty 7.

On the other handy transforms the identity mapping @f Q into the dilation vector
field A: TQ — TTQ defined, at any € TQ, by A(v) := v, (v).

The vertical tangent bundl€t,, defined as the set of all vectarse TT Q tangent to
the fibres ofzy, is then characterized b§(x) = 0.

The second tangent bundl&Q, defined as the set of all vectatse 77 Q satisfying
Tty(x) = 179(x), is characterized b (x) = A(t7¢(x)).

The horizontal cotangent bundie®z,, defined as the set of all covectarse T*T Q
annihilatingVzy, is characterized bysé =& o S;,,¢) = 0.

The above adjoint operataeg : T*T Q — T*T Q also defines a derivation of degree 0
of AT Q vanishing onA°T Q, from which one obtains another derivation of degree 1 given
by ds .= isd — dig.

Finally recall the canonical diffeomorphism : TT*Q — T*T Q characterized by
nrgoa = Tng anddrdy = a*dr, Whose inverse:~! takes any € 7*T Q attached at
nro(§) = v onto an imager—(§) € TT*Q attached aty.o (¢ (€)) =& o v,.

3. The generalized Lagrange equation

We shall first analyse the basic elements of a technique generating an implicit differential
equationD on T*Q from any 1-form6 on T Q. The second-order-like behaviour of such
an equation will then be shown.

(). Let6 be a 1-form onT Q.
Define theevolution operator

E=al00:TQ— TT*Q
and theLegendre morphism
Li=1r90&:TQ—T"Q.
From the commutative diagram

o Tr%Q

T*T Q Pl TT*Q T*Q
QT N\ 7re v Tro o
TO — TQ — (0]
idrg 70
it follows that £ is a section off 7y, i.e.
TJTQ O(‘:ZidTQ (1)
and £ is a bundle morphism from,, to 7y, i.e.
TQ © L= T0- (2)

Moreover, for anyv € T Q, one has
L) = 1720 (271 0))) = O(v) 0 v,
and then
(is®)(v) =0(@w)o S, =0(W)ov, 0Tyt = L) o Tytg = L) o Trpymg o T, L
=0o(L(W) o T,L
= (L*P0)(v)
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is = L*0y. 3)

(ii). The image of the evolution operator
D:=Imé&

will be called thegeneralized Lagrange equatiaon 7*Q generated by.
Note that, ifz € D, i.e. z = &(v) for somev € TQ, then, owing to (1),
v="Tmy(EW)) = Tmp(z), whence

D:{ZGTT*QIZZS(TT(Q(Z))}. (4)

A smooth curvek in T*Q is an integral curve oD, if its tangent lifting & satisfies
Imk C D, as follows from (4):

k:EoTnon. (%)

A smooth curvey in Q will be called a base integral curve &, if y = mg o k for
some integral curvé. If y is a base integral curvé,is uniquely determined by, since,
owing to (5),k = tr-g ok = 1749 0 £ 0 T o k and then

k=Loy (6)

i.e. k is theLegendre liftingof y.

Therefore D behaves like a ‘second-order differential equation’ @n whose actual
unknown isy (a smooth curve i) and whose solutions are the base integral curves.

In view of equations (2), (5) and (6), such solutions are characterized by the following
proposition.

Proposition 1. y is a base integral curve db, iff
Im(Loy)yC D

TLoy=Eoy.

4. Second-order formulation

A genuine second-order implicit equatiéh equivalent toD, will now be worked out. The
integrability algorithm (see [15]) will then be applied to bathand D, and the respective
results related to one another.

(). Let
E:=T?0NTL YD)

where E C T2Q is a second-order differential equation ¢h
Owing to equations (2) and (4), a smooth cutvin T Q is an integral curve of iff

T‘L’Q oc¢ = Lo} oc¢ (7a)
TLoé¢=Eo0Trgokd. (7b)

An integral curvec is uniquely determined by the corresponding base integral curve
y =19 ocin Q, since, owing to (&),

c=y. (8)
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Solutions toE are the base integral curves, characterized (in view of (7) and (8)) by
the following proposition.

Proposition 2. y is a base integral curve d, iff

Imy CE

TLoy=Eoy.

Propositions 1 and 2 show that equatiddsand E are equivalent to each other, in the
sense that:

Proposition 3. D and E have the same base integral curves.

E will then be called the generalized Lagrange equatiorf'¢hgenerated by.

(). E is said to be integrable at a pointe E, if there exists an integral curveof E s.t.
x € Im¢é. The setE® C E of such points is the integrable part BfandC" = 174 (E®)
is the motion subset of.

Now consider the primary constraint subset := 774 (E) and the equatiorE; =
ENTC, (whereT Cy denotes the set of all vectors tangent to smooth curves living)n
E; is equivalent toE, i.e. E; has the same integral curves Asand thenEi’) = E®,

Next consider the secondary constraint subSet := tro(E1) and the equation
E; := E;NTCy = ENTC,. Again, E, is equivalent toE;, whenceEs’ = E\) = E®,
and so on.

Let {C,} and {E;,} be the sequences of constraints and equations extracted Arom
through the above integrability algorithm.

If, for a value f of the index,C; = Cy11, then f is the final step, for one has; = E|,
andC; =Cy forall h > f.

If E; is integrable, i.eE, = E, one obtainst, = E@ andC; = €.

Let {B,} and{D,} be the sequences of constraints and equations likewise extracted from
D through the integrability algorithm.

As £(TTQ(E)) = ‘L’T*Q(Tﬁ(E)), from

TL(EYCD
one obtains
L(C1) C By.
As a consequencd,L(TCy) C T B; and then
TL(E1) C D1
whence
L(C2) C Bz

and so on.

Asto (E?V, c®)yand(D®, BM), we first point out thar bijectively relates the integral
curves ofE to those ofD (in view of proposition 3); hence, as the tangent liftings of integral
curves sweep the whole integrable parts of the equations, we infef thanapsE® onto
D and thenZ mapsC® onto B®,

In conclusion, we have the following proposition.
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Proposition 4. At each step of the integrability algorithm, one has
TL(Ey) C Dy L(Cy) C By,

whereas

TL(ED) = DY £(CY)y =BV,

5. Linearly constrained formulation

The equationE will be shown to fit in with the geometrical framework of linearly
constrained systems (see [11-13]). Regularity condition® amder whichE (and D)
can be put in normal form, will thereby be obtained.

(). Note that, for anyx € E, one hasTL(x) € D —i.e. TL(x) =EoTmgoTL(x) =
EoTrp(x) —andTty(x) = tro(x), whence

TL(x) :gO‘L'TQ()C). (9)

Conversely, for anyc € TTQ satisfying (9), one had’L(x) € D and T'rp(x) =
TrngoTL(x)=Trngo€otrox) =1r9(x), 1.8.Xx € E.
So we obtain the following proposition.

Proposition 5. E={x e TTQ|TL(x) =Eotrox)} .
The algebraic equation (9) also reads
A(x) =0 O ‘L’TQ()C)

whereA = (79, TL) : TTQ — TQ x7-¢ TT*Q is a vector bundle morphism fromy ¢
to pro = L*(tr+g) ando = (idro, ) : TQ — T Q x7:9 TT*Q is a section ofprg.

Proposition 5 then shows thd is the differential equation o Q defined by the
linearly constrained systefitr g, prg, A, o).

(ii). For anyv € T Q, the set of solutions to the linear equatidpl(x) = £(v) (if non-
empty) is an affine subspace BfT Q0 modelled orker (T, L); it then reduces to a singleton
{x,} C T?Q iff T,L is injective.

So, if £ is a local diffeomorphism, and only in that cagejs reducible to normal form
E=ImX,with X:veTQ — x, € T2Q SODE vector field o Q.

6 will be said to be aegular 1-form when. is a local diffeomorphism, and then:

Proposition 6. E is reducible to normal form, ifé is regular.

6 will be said to be ayper-regular1-form when/ is a diffeomorphism.

In that case, we havé = Im X and we can also defing := £, X (the push-forward
of XbyL)by Z=TLoXoL™L

On the one hand, we haven Z C D.

On the other hand, for any € D, from

pi=1r0(2)
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we obtain
t70(Z(p)) = 1140 (2)
Trrgo&oTmgoZ(p)=1r+g0&0Tmp(z)
LoTmgoZ(p)=LoTrp(z)
TrgoZ(p) =Trg(z)
EoTrngoZ(p)=EoTmp(2)
Z(p) =z

ie.DcCImZ.

So we obtain the following proposition.

Proposition 7. If 6 is hyper-regularE and D are both reducible to normal form:

E=ImX D=ImZ
with
Z=L.X.

6. Presymplectic formulation

1581

Further geometrical objects (a presymplectic 2-form and an ‘energy’ 1-formi on
associated witl®) will emerge from an intrinsic analysis of the above formulation of the
equation E. Once expressed in terms of such objediswill exhibit a presymplectic

formulation generalizing that of implicit Lagrangian dynamics.

(). In view of section 5(i), one has thate E iff

x eT?Q
and

a(TE(x)) — 9(‘(()6)) =0
where

T =Trgol
and

1:T?°Q < TTO.
(i). Now note that, for any € T2Q,
Iit =T (trgo) =T (Ttgot) =Ty (TngoTLo) =T (mrgoaoTLot)

= Tyreonmroo Ix(@oTLou)
and then
@(TLX)) o Tet = V7o (@(TLX))) o Te(@o TL o)

= ((a oTLo L)*l?TQ)(x)‘
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Moreover, owing to (3),
(Ol oTLo L)*ﬂTQ = L*T,C*O[*'l?TQ = L*Tﬁ*dTﬁQ = L*dTE*'l}Q = L*dTi_ge
= *diris0 + Fipdig0.
On the other hand
(Firish)(x) = (irish)(x) = (x |ish) = (S(x) [0) = (A(r(x)) |6) = (iaf)(r (1))
= (t%ia0) (x)

KiTigh = T pD.
Hence
(a(TL(x)) = 0(t(x))) o Tyt = (T*diab + Firdish — T°0)(x).
If we introduce thepresymplectic 2-form
w = —digh (10)

(which need not be of constant rank and, owing to (3), is symplecti¢ iff regular) and
the energy 1-form

ni=dir0 —0 (11)
the above result reads
(«(TL(x)) = 0(t(x))) o Tyt = (t"n — tizw)(x) = n(r(x)) o T T — (irw)(x) o Tyt
= n(r(x)) oTyt —iywo Tytrg o Tyt

= (r](‘r(x)) — ixa)) oTyt
whence (.t being surjective)
a(TE(x)) - 9(t(x)) = n(r(x)) — .

(ii).  From (i) and (ii), we obtain the following proposition.
Proposition 8. E = {x € T?Q |i,0 = n(t(x))} .

7. Non-conservative Lagrangian formulation

A special assumption of will introduce a Lagrangian formalism in the presymplectic
setting of the equatiorE. Implicit Lagrangian dynamics, extended in such a way as to
include non-conservative systems, will thereby be obtained.

(). Let us assumeg6 to be adg-exact 1-form, i.e.
is0 = dsL (12)
for some smoothLagrangianfunction L on 7 Q.
This amounts to saying that= dL + F with isF = 0.
Note that the above splitting f into the sum of an exact 1-foraL and a horizontal
1-form F on T Q, is determined up to a gauge choice given by

(L, F) > (L—t)V,F+15dV)

V being an arbitrary smooth function ad. As a consequence, when we refer to a gauge
(L, F), 1-form F, if non-null, will be assumed to be non-exact.
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(ii). With reference to a gaugd., F), the equationE can be formulated as follows.
Owing to (10), and recalling that is horizontal, one has

w = —diSdL — disF

:a)L

with w; := —ddsL (Poincaé—Cartan 2-form).
Owing to (11), and recalling tha is vertical, one has

n=dindL +dinF —dL — F

=dE, - F
with E; := AL — L (energyfunction).
Then put
[L]: 7?0 — VO 1 x > dEL(t(x)) — iyop,
(Euler—Lagrange morphism).
From proposition 8, it follows that:
Proposition 9.

E={xeT?Qliiw, =dE (t(x)) — F(t(x))}

={x e T?Q|[L](x) = F(r(x))}.
The base integral curves @& are then characterized by
[Lloy =Foy (13)
which is the equation of motion of a mechanical system, described by a Lagrahgiad
acted upon by aexternal force fieldF .

According to (13), the motions of the system are simply conceived as those which
deviate from the&comparisonor inertial motions, characterized by Euler—-Lagrange equation
[L] o7 = 0 (see [2]), in that theimertial force —[L] o y is balanced by the external force
Foy.

Note that any other admissible gauge would lead to different specifications of the

(conventional) notions of inertia and force, without of course altering the (observable) class
of motions.

(ii).  With reference to a gaugd., F), as well as the energg; of L, one can define the
power I of F by putting

Hp:TO > R:ve> Hp@) = (v] F(v))

where F : TQ — T*Q is the bundle morphism characterized by— F‘*ﬂQ, i.e. for any
veTQ, Fv) = F(v)oT,tp.
From proposition 9, one then infers the followiegergy balance law

(x|dEL) = TF(t(x)) VxekE.
Along each base integral curve, the energy balance law reads

d
E(ELO)})ZHFOV’

If T =0 orIlr < 0, conservation or dissipation of energy along the motions will
follow.
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Note that any other admissible gaug€, /) would lead toE;. = E, + 7,V and then
the above conservation or dissipation law would be concerning the total energy obtained by
adding up the energ¥, of L" and the potential energyt;,V of F' — F.

8. Examples

Applications to relativistic dynamics, linear Lagrangians and Rayleigh dissipation functions
now follow.

(). LetK :TQ >R : vi> %(v, v) be the kinetic energy associated with a Lorentz
metric (-, -) of index dimQ — 1.

On the time-like open subsef := {v € TQ|K(v) > 0}, consider a 1-formp of
type (12), admitting a gaug@., F) where

L = mv2K
(with m > 0) is a ‘relativistic’ Lagrangian (see [21]) and
F = iCI>
V2K
is defined by an ‘electromagnetic’ force field
O =cirF

(with e € R andFe A»Q).
We remark that

m m m 1
wp =———ddsK —d| — | AdsK = — [ +dKAdK)
SV, e (m) S m(K 2K S
=" 1dK/\'
= 5K WK 2K AWK
and

m
E, = " AK —mv2K = 0.
LT 2K

Moreover recall that, for alb € T Q,
P() =ei,FoT,1g
and then
d(v) =ei,F
whence
Iy (v) = 0.
Now, for anyx € T2Q (with v := 7(x) € C), one hasx € E, i.e.
ixw, =dEp(v) — F(v)

ixwg = irpwg + gX)iawwk

x =T+ g(x)A(v)
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whereT is the SODE vector field determined by

1
ier =dK — —®
m
and
g = drK

2K ot
The above condition om amounts to saying that

x=TW)+aA()

for somea € R, since

(x1dK () = (F@) [dK @) + 5

1 1
2K (v) 2K (v) 2K (o) (AW K@)

glx) =

1
= (T ®W) +a=

2mK (v) 2mK (v) (T7o(F () | @) +a

1
= 72”1[{(1}) l'[q;(v) +a

=da.
So we obtain
E={xeT?Q|t(x) e C,x =T(t(x)) +aA(t(x)) (aeR)}.
Let y be a base integral curve @, i.e.
y=Toy+a(Aoy)
(a being a real-valued function defined on the domairy pf
Along y, one has

d
g (Kev)={1dKoy)=(T|dK)oy +a(AldK)oy

=a(2K o y).
Hence it follows thaty obeys the constraint
Koy=1

iff it is a base integral curve of" (i.e. a = 0) starting from initial conditions belonging to
K.

If Q is the space-time manifold of general relativity, any such curve is a possible world
line (parametrized by proper time) of a test particle with rest massd electric charge,
moving in a gravitational field and acted upon by an electromagnetic force field

(ii). Leto be a 1-form onI' Q of type (12), admitting a gaugé_, F) with
L=irk

A being a 1-form onQ (linear Lagrangian).
As

wyp = —‘Eéd)n
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and
E; =0
for any x € T2Q, puttingv := 7(x), one has
[L1(x) = ixthdh = iydh o TyTg
and then
[L](x) — F(t(x)) = (ivd* — F(v)) o T,70.
Hence
E=1t%0)
with
C:={veTQlidr=FQ).

Actually E reduces to a first-order equation @gh namely its final constrainf, since
(for any smooth curves in Q)

Imy CE iff Imy CC.

If » =0 (i.e.L = 0 up to gauge transformations) aft= ¢ o 1o (wWith ¢ € A1Q), one
has

C =15"(W)
with
W:={q€Qlg(g =0}
In that case( in turn reduces to a holonomic constraint, namBly since
Imy cCC iff ImycCW.

(iii). Let® be a 1-form of type (12), admitting a gauge, F) with
F = —dsF
JF being a real-valued smooth function @rQ. y
For anyv € T Q, one hasF (v) = —dJF(v) o S, or, equivalently,F (v) = —dJF(v) o v,
whence(v | F(v)) = —(A() | dF(v)), i.e.
[ = —AF.
As a consequence, an energy dissipation law holds along the motiavi ¥ 0.
That is the case, e.g., whéhis a Rayleigh dissipation function, i.e. the quadratic form
of a positive-semidefinite, symmetri¢0, 2) tensor fieldk on Q (such a function, on a
Riemmanian manifold Q, (-, -)), corresponds to a frictional force, since, regardin@s
a non-negative self-adjoint vector 1-form @, one getsF(v) = %(k(q) -v, v) for any
v e T,0, and thenF (v) = —(k(q) - v).
In such a case, one obtains the classical dissipation condition (see [8])

Iy =-25<0.
9. Coordinate expression
It is instructive to follow the construction described from sections 3 to 7 in a local chart of

0 (and corresponding charts of the relevant tangent and cotangent bundles). Our coordinate
notation will omit indices and will then read as standard matrix notation.
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(). Recall that (see [22])
al: (q, v/r, s) eT"TO — (q,s/v, r) eTT*Q.

Hence
Ei=at00:(q,v) eTQ - (q,v/6,(q,v),0,(q,v)) € T*TQ
b
(q.6u(q,v)/v,0,(q,v)) € TT*Q
and
L:=1trgof&: (q, v) €eTQO— (q,@v(q, v)) eT0.
For any

2=(q.p/q,p) €eTT*Q

one hasTry(z) = (¢,9) € TQ and then

EoTno(x) =(q.0.(q.9)/4.0,(q.9)) € TT*Q.

Soze D :=Imé&, ie.z=E&oTmnp(z), iff the coordinatedq, p/q, p) satisfy

p=0,(q,q) P ="0,(q,9q). (14)

D is then the submanifold of 7*Q locally described by equations (14).

Now let k = (p,q) (with ¢ = g(¢) , p = p(@)) be a smooth curve in the given
coordinate domain off*Q, andk = (¢, p/q, p) (with ¢ = dgq/dt, p = dp/dt) its tangent
lifting.

From the above description oD, it follows that & is an integral curve ofD,
i.e. Imk C D, iff the functions (q(t),p(t)) satisfy the first-order implicit differential
equations (14).

As a consequence, projectign= ook will be represented by functiong) satisfying
the second-order implicit differential equations

d . .

which then locally characterize the base integral curved of

We remark that equations (14) and (15) locally confirm that the Legendre lifting
y +— L oy maps base integral curves onto integral curves and, as a mapping between
such classes of curves, is invertible, its two-sided inverse being the projéationry o k.

(ii). For any
x=(q,v/q,v) e TTQ

one has

a6

.00, . 00, . .
TL(x) = (q,é’v(q, v)/q, %q + m v) eTT*Q

(where the partial derivatives are evaluatedetv)), and

Eotro(x) = (q,0,(q,v)/v,0,(q,v)) € TT*Q.
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Sox € E :=T?QNTL YD), i.e. TL(x) = & o tro(x), iff the coordinates(q, v/q, v)
satisfy

g=v (16a)
20, a0, .

/ =0, . 16b
dq q-+ 9v v (g, v) (16b)

E is then the submanifold offTQ (72Q) locally described by equations (16)
(equation (186)).

Now letc = (¢, v) (with ¢ = ¢ (), v = v(¢)) be a smooth curve in the given coordinate
domain onT Q, and¢ = (g, v/q, v) (with ¢ = dq/dt, v = dv/dt) its tangent lifting.

From the above description @, it follows thatc is an integral curve of, i.e. Im ¢ C
E, iff the functions(q(t), v(t)) satisfy the first-order implicit differential equations (16).

As a consequence, the projectipn:= 7y o ¢ will be represented by functiong(r)
satisfying equations (15), which then also locally characterize the base integral cufwes of

We remark that equations (15) and (16) locally confirm that the tangent lifting
maps base integral curves onto integral curves and, as a mapping between such classes of
curves, is invertible, its two-sided inverse being the projecties 7, o c.

The same local description, of course, will be obtained from the coordinate expression
of the presymplectic formalism.

Standard computations show that= —dis0 has a block-matrix of components given

by
30, [36,\" 96,
aq B ( aq ) ov
36, \"
() o
As a consequence, for any= (¢, v/q,v) € TT Q, one has

.0 a,\" . 86, . 06,.
yw), =\ — - ——q— v
1= \ag ) 17 947 bu

o) _(aev)T.
Iyw), = 90 q.

Moreover, fromn := di 6 — 6, one obtains
a0,

T
(n(z)), = (8q ) v—0,(q,v)
(%)
V.
av
30, 36,

(e . -
(n(r@) —irw), = (aq> W=+ 57+ 500 =6, v)

(n(z()),

Hence

06.\"
(1) = i0), = (52 ) =,

Sox € E, i.e.x € T?Q andn(t(x)) — i.w = 0, iff the coordinatesq, v/q, v) satisfy
equations (16).
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Note that, ify is a smooth curve i@ represented by functions= ¢(¢), thennoy —ijw
is a section ofv’°z, alongy admitting components given dyl@v(q, q)/dt —6,(q, q), 0).
As a consequence, we reobtain thais a base integral curve of (i.e. Imy C E or,
equivalently,n o y —i;w = 0) iff the functionsg (¢) satisfy equations (15).

(iii). If 6 =dL+ F with F horizontal (and therF, = 0), one has$, = dL/dq + F, and
0, = dL/dv.
Equations (14), (16) and (15) then read
oL . oL

= — = — F
v p 8q+q

- 0 oL . 0 oL . 8L_F
4=v [w(m)]"*[m(avﬂ“‘aq—q("’“)

d (LY oL _ .o
di\ag)  oq T4

p

which are the familiar coordinate Lagrange equations meant as local implicit differential

equations or™*Q, T Q and Q, respectively.

Acknowledgment

We would like to thank Professor G Marmo for reading the manuscript and for stimulating
discussions.

References

[1] Abraham R and MarsdeJ E 1978Foundations of MechanicfReading, MA: Benjamin)

[2] Barone F and Grassini R 1997 On the second-order Euler-Lagrange equation in impliciRfortslat.
to appear

[3] Cantrijn F 1984 Symplectic approach to nonconservative mechdnigath. Phys25 271-6

[4] Crampin M 1983 Tangent bundle geometry for Lagrangian dynati¢thys. A: Math. Genl6 3755-72

[5] de Léon M and RodrigueP R 1989Methods of Differential Geometry in Analytical Mechan{gsnsterdam:
North-Holland)

[6] de Ritis R, Marmo G, Platania G and Scudellaro P 1983 Inverse problem in classical mechanics: dissipative

systemdnt. J. Theor. Phys22 931-46
[7] Godbillon C 1969Géon€trie Différentielle et Mcanique Analytiqué¢Paris: Hermann)
[8] Goldstein H 1980Classical Mechanic§Reading, MA: Addison-Wesley)

[9] Gotay M J and Nester J 1979 Presymplectic Lagrangian systems I: the constraint algorithm and the

equivalence theoremnn. Inst. H Poincag 30 129-42
[10] Gotay M J and Nester J 1980 Presymplectic Lagrangian systems Il: the second-order equation paotlem
Inst. H Poincag 32 1-13

[11] Gracia X and Pons J M 1989 On an evolution operator connecting Lagrangian and Hamiltonian formalism

Lett. Math. Phys17 175-80

[12] Gracia X and Pons J M 1991 Constrained systems: a unified geometric appnoadhTheor. Phys30
511-6

[13] Gracia X and Pons J M 1992 A generalized geometric framework for constrained syBi#nteom. Appl.
2223-47

[14] Marmo G, Mendella G and TulczyjeW M 1992 Symmetries and constants of the motion for dynamics in
implicit form Ann. Inst. H Poincae’57 147-66

[15] Marmo G, Mendella G and TulczyjeW M 1995 Integrability of implicit differential equation3. Phys. A.:
Math. Gen.28 149-63

[16] Shahshahani S 1972 Dissipative systems on manifolegsnt. Math.16 177-90



1590 F Barone et al

[17] Tulczyjew W M 1974 Hamiltonian systems, Lagrangian systems and the Legendre transfori@gtign
Math. 16 247-58

[18] Tulczyjew W M 1976 Le sous-varietes Lagrangiennes et la dynamique HamiltoniéRnAcad. Sci. Paris
28315-8

[19] Tulczyjew W M 1976 Le sous-varietes Lagrangiennes et la dynamique LagrangdRmecad. Sci. Paris
283675-8

[20] Tulczyjew W M 1977 The Legendre transformatiédmn. Inst. H Poincag’27 101-14

[21] Tulczyjew W M 1977 A symplectic formulation of relativistic particle dynamiésta Phys. PolB 8 431-47

[22] Tulczyjew W M 1989 Geometric Formulations of Physical Theori@daples: Bibliopolis)

[23] Woodhouse N 198@Geometric QuantizatiorfOxford: Clarendon)



