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Abstract. Different geometric formulations are obtained for a generalized Lagrange equation
non-reducible to normal form and encompassing non-conservative dynamics.

1. Introduction

Implicit differential equations arise quite naturally in the geometrical setting of conservative
mechanics, since equations of motion are deduced from variational principles and, as such,
they do not exhibit the explicit (or normal) form of vector fields on some carrier space [2].

On the other hand, the vector field approach is always adopted when dealing
geometrically with non-conservative mechanics [16, 1, 6, 3].

As a matter of fact, differential equations are all implicit in principle, and in no way
is their basic physical meaning related to their being reducible or non-reducible to explicit
form.

So conceptual clarity would require a unified implicit formulation of conservative and
non-conservative mechanics.

According to Tulczyjew [17–19, 20, 22, 14], the dynamics of a conservative mechanical
system, described by a LagrangianL on the tangent bundleTQ of a configuration space
Q, is governed by the implicit differential equation on cotangent bundleT ∗Q generated by
dL, i.e. the submanifold ofT T ∗Q obtained fromIm(dL) ⊂ T ∗TQ through the canonical
diffeomorphism ofT ∗TQ onto T T ∗Q.

In a previous paper [2], such an equation has been intrinsically related to the implicit
Euler–Lagrange equation deduced from Hamilton’s variational principle.

In the present paper, the whole theory is embodied in a geometrical treatment concerning
a more general kind of submanifold ofT T ∗Q, which encompasses the dynamics of non-
conservative mechanical systems as well.

The generalized Lagrange equationunder consideration is a submanifoldD ⊂ T T ∗Q
generated by any (global or local) 1-formθ on TQ.

The crucial role in analysingD is played by the Legendre morphism associated withθ

(generalizing that associated with a Lagrangian [1]), which allows us to show (section 3)
thatD behaves like a second-order equation, in the sense that its integral curves onT ∗Q
turn out to be completely determined by their own projections ontoQ.
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This is the central property, which leads us to recognize (section 4) thatD is actually
equivalent to (i.e. has the same solution curves inQ as) a genuine second-order implicit
equationE (i.e. a submanifold of the second tangent bundle ofQ). The integrability
algorithm [15] is applied to both equations, and their respective integrable parts and
constraint subsets are related to one another.

The equationE is then shown (section 5) to fit in with the geometric framework of
linearly constrained systems developed in [11–13]. Hence we obtain a regularity (or hyper-
regularity) condition onθ , expressed by the Legendre morphism being a local (or global)
diffeomorphism, under whichE (andD) can be put in normal form.

After an intrinsic analysis of the above geometrical setting, the equationE is also
given (section 6) a presymplectic formulation, generalizing the one of implicit Lagrangian
dynamics [9, 10, 23, 2].

The latter, extended in such a way as to include non-conservative dynamics, is then
recovered (section 7) under a suitable hypothesis onθ .

Some examples (featuring a degenerate relativistic Lagrangian coupled with an
electromagnetic field, a linear Lagrangian and a generalized Rayleigh dissipation function,
respectively) are given in section 8.

The coordinate expressions of the main points of the above theory are finally given in
section 9.

Further developments including momentum mapping and Noether theorems, as well as
an extension of our scheme leading to a unified approach to constrained mechanical systems
as implicit differential equations, will be the object of forthcoming papers.

2. Preliminaries

Here is a list of the main geometric tools we shall adopt in what follows.

(i). Let M be a smooth manifold.
The tangent and cotangent bundle projections ontoM will be denoted byτM : TM → M

andπM : T ∗M → M, respectively.
If ψ : M → N is a smooth mapping,T ψ : TM → TN is the tangent mapping ofψ ,

andψ∗ : 3N → 3M the pull-back of the exterior algebra ofM into that ofN by ψ .
The Liouville 1-form onT ∗M will be denoted byϑM : T ∗M → T ∗T ∗M : ξ →

ϑM(ξ) := ξ ◦ TξπM .

(ii). The basictangent derivationsof 3M (see [22, 14]) are the following.
Let iT : 3M → 3TM be theτM -derivation of degree−1 which vanishes on30M and

acts on anyθ ∈ 31M by putting, for anyx ∈ TM, (iT θ)(x) := ixθ = 〈x|θ〉 (where the
inner productix is defined by the usual pairing〈·|·〉 between vectors and forms). Hence it
follows that iT acts on anyω ∈ 32M by (iT ω)(x) := ixω ◦ TxτM .

From iT one also obtains aτM -derivation of degree 0 given bydT := iT d + diT
(whered denotes the exterior derivative of both3M and3TM) and satisfying, for any
ψ : M → N , dT ψ

∗ = (T ψ)∗dT .

(iii). The key role in thegeometry of a tangent bundleM = TQ (see [4, 5, 22]) is
played by the vertical liftingν : TQ ×Q TQ → T TQ, whose restrictionνv to the fibre
{v} × TqQ = TqQ over anyv ∈ TQ (with q := τQ(v)) maps isomorphicallyTqQ onto its
own tangent space atv.
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On the one hand,ν transforms the tangent mapping ofτQ into the almost-tangent
structureS : T TQ→ T TQ defined, for anyv ∈ TQ, by Sv := S|TvTQ := νv ◦ TvτQ.

On the other hand,ν transforms the identity mapping ofTQ into the dilation vector
field 1 : TQ→ T TQ defined, at anyv ∈ TQ, by 1(v) := νv(v).

The vertical tangent bundleV τQ, defined as the set of all vectorsx ∈ T TQ tangent to
the fibres ofτQ, is then characterized byS(x) = 0.

The second tangent bundleT 2Q, defined as the set of all vectorsx ∈ T TQ satisfying
T τQ(x) = τTQ(x), is characterized byS(x) = 1(τTQ(x)).

The horizontal cotangent bundleV 0τQ, defined as the set of all covectorsξ ∈ T ∗TQ
annihilatingV τQ, is characterized byiSξ := ξ ◦ SπTQ(ξ) = 0.

The above adjoint operatoriS : T ∗TQ→ T ∗TQ also defines a derivation of degree 0
of 3TQ vanishing on30TQ, from which one obtains another derivation of degree 1 given
by dS := iSd − diS .

Finally recall the canonical diffeomorphismα : T T ∗Q → T ∗TQ characterized by
πTQ ◦ α = T πQ anddT ϑQ = α∗ϑTQ, whose inverseα−1 takes anyξ ∈ T ∗TQ attached at
πTQ(ξ) =: v onto an imageα−1(ξ) ∈ T T ∗Q attached atτT ∗Q

(
α−1(ξ)

) = ξ ◦ νv.
3. The generalized Lagrange equation

We shall first analyse the basic elements of a technique generating an implicit differential
equationD on T ∗Q from any 1-formθ on TQ. The second-order-like behaviour of such
an equation will then be shown.

(i). Let θ be a 1-form onTQ.
Define theevolution operator

E := α−1 ◦ θ : TQ→ T T ∗Q

and theLegendre morphism

L := τT ∗Q ◦ E : TQ→ T ∗Q.

From the commutative diagram

T ∗TQ
α←− T T ∗Q

τT ∗Q−→ T ∗Q

θ

x ↘ πTQ ↙ T πQ ↙ πQ

TQ −→
idTQ

TQ −→
τQ

Q

it follows that E is a section ofT πQ, i.e.

T πQ ◦ E = idTQ (1)

andL is a bundle morphism fromτQ to πQ, i.e.

πQ ◦ L = τQ. (2)

Moreover, for anyv ∈ TQ, one has

L(v) = τT ∗Q
(
α−1

(
θ(v)

)) = θ(v) ◦ νv
and then

(iSθ)(v) = θ(v) ◦ Sv = θ(v) ◦ νv ◦ TvτQ = L(v) ◦ TvτQ = L(v) ◦ TL(v)πQ ◦ TvL
= ϑQ

(
L(v)

) ◦ TvL
= (L∗ϑQ)(v)
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i.e.

iSθ = L∗ϑQ. (3)

(ii). The image of the evolution operator

D := Im E
will be called thegeneralized Lagrange equationon T ∗Q generated byθ .

Note that, if z ∈ D, i.e. z = E(v) for some v ∈ TQ, then, owing to (1),
v = T πQ

(
E(v)

) = T πQ(z), whence

D = {z ∈ T T ∗Q | z = E(T πQ(z))}. (4)

A smooth curvek in T ∗Q is an integral curve ofD, if its tangent lifting k̇ satisfies
Im k̇ ⊂ D, as follows from (4):

k̇ = E ◦ T πQ ◦ k̇. (5)

A smooth curveγ in Q will be called a base integral curve ofD, if γ = πQ ◦ k for
some integral curvek. If γ is a base integral curve,k is uniquely determined byγ , since,
owing to (5),k = τT ∗Q ◦ k̇ = τT ∗Q ◦ E ◦ T πQ ◦ k̇ and then

k = L ◦ γ̇ (6)

i.e. k is theLegendre liftingof γ .
ThereforeD behaves like a ‘second-order differential equation’ onQ, whose actual

unknown isγ (a smooth curve inQ) and whose solutions are the base integral curves.
In view of equations (2), (5) and (6), such solutions are characterized by the following

proposition.

Proposition 1. γ is a base integral curve ofD, iff

Im(L ◦ γ̇ )̇ ⊂ D
i.e.

TL ◦ γ̈ = E ◦ γ̇ .

4. Second-order formulation

A genuine second-order implicit equationE, equivalent toD, will now be worked out. The
integrability algorithm (see [15]) will then be applied to bothE andD, and the respective
results related to one another.

(i). Let

E := T 2Q ∩ TL−1(D)

whereE ⊂ T 2Q is a second-order differential equation onQ.
Owing to equations (2) and (4), a smooth curvec in TQ is an integral curve ofE iff

T τQ ◦ ċ = τTQ ◦ ċ (7a)

TL ◦ ċ = E ◦ T τQ ◦ ċ. (7b)

An integral curvec is uniquely determined by the corresponding base integral curve
γ := τQ ◦ c in Q, since, owing to (7a),

c = γ̇ . (8)
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Solutions toE are the base integral curves, characterized (in view of (7) and (8)) by
the following proposition.

Proposition 2. γ is a base integral curve ofE, iff

Im γ̈ ⊂ E
i.e.

TL ◦ γ̈ = E ◦ γ̇ .
Propositions 1 and 2 show that equationsD andE are equivalent to each other, in the

sense that:

Proposition 3. D andE have the same base integral curves.

E will then be called the generalized Lagrange equation onTQ generated byθ .

(ii). E is said to be integrable at a pointx ∈ E, if there exists an integral curvec of E s.t.
x ∈ Im ċ. The setE(i) ⊂ E of such points is the integrable part ofE andC(i) := τTQ(E(i))
is the motion subset ofE.

Now consider the primary constraint subsetC1 := τTQ(E) and the equationE1 :=
E ∩ T C1 (whereT C1 denotes the set of all vectors tangent to smooth curves living inC1).
E1 is equivalent toE, i.e.E1 has the same integral curves asE, and thenE(i)1 = E(i).

Next consider the secondary constraint subsetC2 := τTQ(E1) and the equation
E2 := E1 ∩ T C2 = E ∩ T C2. Again,E2 is equivalent toE1, whenceE(i)2 = E(i)1 = E(i),
and so on.

Let {Ch} and {Eh} be the sequences of constraints and equations extracted fromE

through the above integrability algorithm.
If, for a valuef of the index,Cf = Cf+1, thenf is the final step, for one hasEf = Eh

andCf = Ch for all h > f .
If Ef is integrable, i.e.Ef = E(i)f , one obtainsEf = E(i) andCf = C(i).
Let {Bh} and{Dh} be the sequences of constraints and equations likewise extracted from

D through the integrability algorithm.
As L

(
τTQ(E)

) = τT ∗Q(TL(E)), from

TL(E) ⊂ D
one obtains

L(C1) ⊂ B1.

As a consequence,TL(T C1) ⊂ T B1 and then

TL(E1) ⊂ D1

whence

L(C2) ⊂ B2

and so on.
As to (E(i), C(i)) and(D(i), B(i)), we first point out thatL bijectively relates the integral

curves ofE to those ofD (in view of proposition 3); hence, as the tangent liftings of integral
curves sweep the whole integrable parts of the equations, we infer thatTL mapsE(i) onto
D(i), and thenL mapsC(i) ontoB(i).

In conclusion, we have the following proposition.
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Proposition 4. At each step of the integrability algorithm, one has

TL(Eh) ⊂ Dh L(Ch) ⊂ Bh
whereas

TL(E(i)) = D(i) L(C(i)) = B(i).

5. Linearly constrained formulation

The equationE will be shown to fit in with the geometrical framework of linearly
constrained systems (see [11–13]). Regularity conditions onθ under whichE (andD)
can be put in normal form, will thereby be obtained.

(i). Note that, for anyx ∈ E, one hasTL(x) ∈ D – i.e. TL(x) = E ◦ T πQ ◦ TL(x) =
E ◦ T τQ(x) – andT τQ(x) = τTQ(x), whence

TL(x) = E ◦ τTQ(x). (9)

Conversely, for anyx ∈ T TQ satisfying (9), one hasTL(x) ∈ D and T τQ(x) =
T πQ ◦ TL(x) = T πQ ◦ E ◦ τTQ(x) = τTQ(x), i.e. x ∈ E.

So we obtain the following proposition.

Proposition 5. E = {x ∈ T TQ | TL(x) = E ◦ τTQ(x)} .

The algebraic equation (9) also reads

A(x) = σ ◦ τTQ(x)
whereA := (τTQ, TL) : T TQ→ TQ×T ∗Q T T ∗Q is a vector bundle morphism fromτTQ
to ρTQ := L∗(τT ∗Q) andσ := (idTQ, E) : TQ→ TQ×T ∗Q T T ∗Q is a section ofρTQ.

Proposition 5 then shows thatE is the differential equation onTQ defined by the
linearly constrained system(τTQ, ρTQ,A, σ ).

(ii). For anyv ∈ TQ, the set of solutions to the linear equationTvL(x) = E(v) (if non-
empty) is an affine subspace ofTvTQ modelled onker(TvL); it then reduces to a singleton
{xv} ⊂ T 2Q iff TvL is injective.

So, if L is a local diffeomorphism, and only in that case,E is reducible to normal form
E = ImX, with X : v ∈ TQ→ xv ∈ T 2Q SODE vector field onTQ.

θ will be said to be aregular 1-form whenL is a local diffeomorphism, and then:

Proposition 6. E is reducible to normal form, iffθ is regular.

θ will be said to be ahyper-regular1-form whenL is a diffeomorphism.
In that case, we haveE = ImX and we can also defineZ := L∗X (the push-forward

of X by L) by Z = TL ◦X ◦ L−1.
On the one hand, we haveImZ ⊂ D.
On the other hand, for anyz ∈ D, from

p := τT ∗Q(z)
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we obtain

τT ∗Q
(
Z(p)

) = τT ∗Q(z)
τT ∗Q ◦ E ◦ T πQ ◦ Z(p) = τT ∗Q ◦ E ◦ T πQ(z)
L ◦ T πQ ◦ Z(p) = L ◦ T πQ(z)
T πQ ◦ Z(p) = T πQ(z)
E ◦ T πQ ◦ Z(p) = E ◦ T πQ(z)
Z(p) = z

i.e.D ⊂ ImZ.
So we obtain the following proposition.

Proposition 7. If θ is hyper-regular,E andD are both reducible to normal form:

E = ImX D = ImZ
with

Z = L∗X.

6. Presymplectic formulation

Further geometrical objects (a presymplectic 2-form and an ‘energy’ 1-form onTQ

associated withθ ) will emerge from an intrinsic analysis of the above formulation of the
equationE. Once expressed in terms of such objects,E will exhibit a presymplectic
formulation generalizing that of implicit Lagrangian dynamics.

(i). In view of section 5(i), one has thatx ∈ E iff

x ∈ T 2Q

and

α
(
TL(x)

)− θ(τ(x)) = 0

where

τ := τTQ ◦ ι
and

ι : T 2Q ↪→ T TQ.

(ii). Now note that, for anyx ∈ T 2Q,

Txτ = Tx(τTQ ◦ ι) = Tx(T τQ ◦ ι) = Tx(T πQ ◦ TL ◦ ι) = Tx(πTQ ◦ α ◦ TL ◦ ι)
= Tα(TL(x))πTQ ◦ Tx(α ◦ TL ◦ ι)

and then

α
(
TL(x)

) ◦ Txτ = ϑTQ (α(TL(x))) ◦ Tx(α ◦ TL ◦ ι)
= ((α ◦ TL ◦ ι)∗ϑTQ)(x).
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Moreover, owing to (3),

(α ◦ TL ◦ ι)∗ϑTQ = ι∗TL∗α∗ϑTQ = ι∗TL∗dT ϑQ = ι∗dTL∗ϑQ = ι∗dT iSθ
= ι∗diT iSθ + ι∗iT diSθ.

On the other hand

(ι∗iT iSθ)(x) = (iT iSθ)(x) = 〈x | iSθ〉 = 〈S(x) | θ〉 = 〈1
(
τ(x)

) | θ〉 = (i1θ)(τ(x))
= (τ ∗i1θ)(x)

i.e.

ι∗iT iSθ = τ ∗i1θ.
Hence (

α
(
TL(x)

)− θ(τ(x))) ◦ Txτ = (τ ∗di1θ + ι∗iT diSθ − τ ∗θ)(x).
If we introduce thepresymplectic 2-form

ω := −diSθ (10)

(which need not be of constant rank and, owing to (3), is symplectic iffθ is regular) and
the energy 1-form

η := di1θ − θ (11)

the above result reads(
α
(
TL(x)

)− θ(τ(x))) ◦ Txτ = (τ ∗η − ι∗iT ω)(x) = η(τ(x)) ◦ Txτ − (iT ω)(x) ◦ Txι
= η(τ(x)) ◦ Txτ − ixω ◦ TxτTQ ◦ Txι
= (η(τ(x))− ixω) ◦ Txτ

whence (Txτ being surjective)

α
(
TL(x)

)− θ(τ(x)) = η(τ(x))− ixω.
(iii). From (i) and (ii), we obtain the following proposition.

Proposition 8. E = {x ∈ T 2Q | ixω = η
(
τ(x)

)}
.

7. Non-conservative Lagrangian formulation

A special assumption onθ will introduce a Lagrangian formalism in the presymplectic
setting of the equationE. Implicit Lagrangian dynamics, extended in such a way as to
include non-conservative systems, will thereby be obtained.

(i). Let us assumeiSθ to be adS-exact 1-form, i.e.

iSθ = dSL (12)

for some smoothLagrangian functionL on TQ.
This amounts to saying thatθ = dL+ F with iSF = 0.
Note that the above splitting ofθ into the sum of an exact 1-formdL and a horizontal

1-form F on TQ, is determined up to a gauge choice given by

(L, F ) 7→ (L− τ ∗QV, F + τ ∗QdV )
V being an arbitrary smooth function onQ. As a consequence, when we refer to a gauge
(L, F ), 1-form F , if non-null, will be assumed to be non-exact.
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(ii). With reference to a gauge(L, F ), the equationE can be formulated as follows.
Owing to (10), and recalling thatF is horizontal, one has

ω = −diSdL− diSF
= ωL

with ωL := −ddSL (Poincaŕe–Cartan 2-form).
Owing to (11), and recalling that1 is vertical, one has

η = di1dL+ di1F − dL− F
= dEL − F

with EL := 1L− L (energy function).
Then put

[L] : T 2Q→ V 0τQ : x 7→ dEL
(
τ(x)

)− ixωL
(Euler–Lagrange morphism).

From proposition 8, it follows that:

Proposition 9.

E = {x ∈ T 2Q | ixωL = dEL
(
τ(x)

)− F (τ(x))}
= {x ∈ T 2Q | [L](x) = F (τ(x))}.

The base integral curves ofE are then characterized by

[L] ◦ γ̈ = F ◦ γ̇ (13)

which is the equation of motion of a mechanical system, described by a LagrangianL and
acted upon by anexternal force fieldF .

According to (13), the motions of the system are simply conceived as those which
deviate from thecomparisonor inertial motions, characterized by Euler–Lagrange equation
[L] ◦ γ̈ = 0 (see [2]), in that theirinertial force−[L] ◦ γ̈ is balanced by the external force
F ◦ γ̇ .

Note that any other admissible gauge would lead to different specifications of the
(conventional) notions of inertia and force, without of course altering the (observable) class
of motions.

(iii). With reference to a gauge(L, F ), as well as the energyEL of L, one can define the
power5F of F by putting

5F : TQ→ R : v 7→ 5F(v) := 〈v | F̃ (v)〉
whereF̃ : TQ→ T ∗Q is the bundle morphism characterized byF = F̃ ∗ϑQ, i.e. for any
v ∈ TQ, F(v) = F̃ (v) ◦ TvτQ.

From proposition 9, one then infers the followingenergy balance law

〈x | dEL〉 = 5F

(
τ(x)

) ∀ x ∈ E.
Along each base integral curve, the energy balance law reads

d

dt
(EL ◦ γ̇ ) = 5F ◦ γ̇ .

If 5F = 0 or5F 6 0, conservation or dissipation of energyEL along the motions will
follow.
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Note that any other admissible gauge(L′, F ′) would lead toEL′ = EL+ τ ∗QV and then
the above conservation or dissipation law would be concerning the total energy obtained by
adding up the energyEL′ of L′ and the potential energy−τ ∗QV of F ′ − F .

8. Examples

Applications to relativistic dynamics, linear Lagrangians and Rayleigh dissipation functions
now follow.

(i). Let K : TQ → R : v 7→ 1
2〈v, v〉 be the kinetic energy associated with a Lorentz

metric 〈·, ·〉 of index dimQ− 1.
On the time-like open subsetC := {v ∈ TQ |K(v) > 0}, consider a 1-formθ of

type (12), admitting a gauge(L, F ) where

L := m
√

2K

(with m > 0) is a ‘relativistic’ Lagrangian (see [21]) and

F := 1√
2K

8

is defined by an ‘electromagnetic’ force field

8 := e iTF

(with e ∈ R andF∈ 32Q).
We remark that

ωL = − m√
2K

ddSK − d
(

m√
2K

)
∧ dSK = m√

2K

(
ωK + 1

2K
dK ∧ dSK

)

= m√
2K

(
ωK − 1

2K
dK ∧ i1ωK

)
and

EL = m√
2K

1K −m
√

2K = 0.

Moreover recall that, for allv ∈ TQ,

8(v) = e ivF ◦ TvτQ
and then

8̃(v) = e ivF
whence

58(v) = 0.

Now, for anyx ∈ T 2Q (with v := τ(x) ∈ C), one hasx ∈ E, i.e.

ixωL = dEL(v)− F(v)
iff

ixωK = i0(v)ωK + g(x)i1(v)ωK
i.e.

x = 0(v)+ g(x)1(v)
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where0 is the SODE vector field determined by

i0ωK = dK − 1

m
8

and

g := 1

2K ◦ τ dT K.
The above condition onx amounts to saying that

x = 0(v)+ a1(v)
for somea ∈ R, since

g(x) = 1

2K(v)
〈x | dK(v)〉 = 1

2K(v)
〈0(v) | dK(v)〉 + a

2K(v)
〈1(v) | dK(v)〉

= 1

2mK(v)
〈0(v) |8(v)〉 + a = 1

2mK(v)
〈T τQ

(
0(v)

) | 8̃(v)〉 + a
= 1

2mK(v)
58(v)+ a

= a.
So we obtain

E = {x ∈ T 2Q | τ(x) ∈ C , x = 0(τ(x))+ a1(τ(x)) (a ∈ R)} .
Let γ be a base integral curve ofE, i.e.

γ̈ = 0 ◦ γ̇ + a(1 ◦ γ̇ )
(a being a real-valued function defined on the domain ofγ ).

Along γ , one has

d

dt
(K ◦ γ̇ ) = 〈γ̈ | dK ◦ γ̇ 〉 = 〈0 | dK〉 ◦ γ̇ + a〈1 | dK〉 ◦ γ̇

= a(2K ◦ γ̇ ).
Hence it follows thatγ obeys the constraint

K ◦ γ̇ = 1

iff it is a base integral curve of0 (i.e. a = 0) starting from initial conditions belonging to
K−1(1).

If Q is the space-time manifold of general relativity, any such curve is a possible world
line (parametrized by proper time) of a test particle with rest massm and electric chargee,
moving in a gravitational fieldK and acted upon by an electromagnetic force field8.

(ii). Let θ be a 1-form onTQ of type (12), admitting a gauge(L, F ) with

L = iT λ
λ being a 1-form onQ (linear Lagrangian).

As

ωL = −τ ∗Qdλ
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and

EL = 0

for any x ∈ T 2Q, puttingv := τ(x), one has

[L](x) = ixτ ∗Qdλ = ivdλ ◦ TvτQ
and then

[L](x)− F (τ(x)) = (ivdλ− F̃ (v)) ◦ TvτQ.
Hence

E = τ−1(C)

with

C := {v ∈ TQ | ivdλ = F̃ (v)}.
Actually E reduces to a first-order equation onQ, namely its final constraintC, since

(for any smooth curveγ in Q)

Im γ̈ ⊂ E iff Im γ̇ ⊂ C.
If λ = 0 (i.e.L = 0 up to gauge transformations) andF̃ = φ ◦ τQ (with φ ∈ 31Q), one

has

C = τ−1
Q (W)

with

W := {q ∈ Q |φ(q) = 0
}
.

In that case,C in turn reduces to a holonomic constraint, namelyW , since

Im γ̇ ⊂ C iff Im γ ⊂ W.

(iii). Let θ be a 1-form of type (12), admitting a gauge(L, F ) with

F = −dSF
F being a real-valued smooth function onTQ.

For anyv ∈ TQ, one hasF(v) = −dF(v) ◦ Sv or, equivalently,F̃ (v) = −dF(v) ◦ νv
whence〈v | F̃ (v)〉 = −〈1(v) | dF(v)〉, i.e.

5F = −1F.

As a consequence, an energy dissipation law holds along the motions if1F > 0.
That is the case, e.g., whenF is a Rayleigh dissipation function, i.e. the quadratic form

of a positive-semidefinite, symmetric,(0, 2) tensor fieldk on Q (such a function, on a
Riemmanian manifold(Q, 〈·, ·〉), corresponds to a frictional force, since, regardingk as
a non-negative self-adjoint vector 1-form onQ, one getsF(v) = 1

2〈k(q) · v , v〉 for any
v ∈ TqQ, and thenF̃ (v) = −〈k(q) · v).

In such a case, one obtains the classical dissipation condition (see [8])

5F = −2F 6 0.

9. Coordinate expression

It is instructive to follow the construction described from sections 3 to 7 in a local chart of
Q (and corresponding charts of the relevant tangent and cotangent bundles). Our coordinate
notation will omit indices and will then read as standard matrix notation.
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(i). Recall that (see [22])

α−1 :
(
q, v/r, s

) ∈ T ∗TQ 7→ (
q, s/v, r

) ∈ T T ∗Q.
Hence

E := α−1 ◦ θ :
(
q, v

) ∈ TQ θ−→ (
q, v/θq(q, v), θv(q, v)

) ∈ T ∗TQyα−1(
q, θv(q, v)/v, θq(q, v)

) ∈ T T ∗Q
and

L := τT ∗Q ◦ E :
(
q, v

) ∈ TQ 7→ (
q, θv(q, v)

) ∈ T ∗Q.
For any

z ≡ (q, p/q̇, ṗ) ∈ T T ∗Q
one hasT πQ(z) ≡ (q, q̇) ∈ TQ and then

E ◦ T πQ(z) ≡
(
q, θv(q, q̇)/q̇, θq(q, q̇)

) ∈ T T ∗Q.
So z ∈ D := Im E , i.e. z = E ◦ T πQ(z), iff the coordinates(q, p/q̇, ṗ) satisfy

p = θv(q, q̇) ṗ = θq(q, q̇). (14)

D is then the submanifold ofT T ∗Q locally described by equations (14).
Now let k ≡ (p, q) (with q = q(t) , p = p(t)) be a smooth curve in the given

coordinate domain onT ∗Q, andk̇ ≡ (q, p/q̇, ṗ) (with q̇ = dq/dt, ṗ = dp/dt) its tangent
lifting.

From the above description ofD, it follows that k is an integral curve ofD,
i.e. Im k̇ ⊂ D, iff the functions

(
q(t), p(t)

)
satisfy the first-order implicit differential

equations (14).
As a consequence, projectionγ := πQ◦k will be represented by functionsq(t) satisfying

the second-order implicit differential equations

d

dt
θv(q, q̇) = θq(q, q̇) (15)

which then locally characterize the base integral curves ofD.
We remark that equations (14) and (15) locally confirm that the Legendre lifting

γ 7→ L ◦ γ̇ maps base integral curves onto integral curves and, as a mapping between
such classes of curves, is invertible, its two-sided inverse being the projectionk 7→ πQ ◦ k.

(ii). For any

x ≡ (q, v/q̇, v̇) ∈ T TQ
one has

TL(x) ≡
(
q, θv(q, v)/q̇,

∂θv

∂q
q̇ + ∂θv

∂v
v̇

)
∈ T T ∗Q

(where the partial derivatives are evaluated at(q, v)), and

E ◦ τTQ(x) =
(
q, θv(q, v)/v, θq(q, v)

) ∈ T T ∗Q.
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So x ∈ E := T 2Q ∩ TL−1(D), i.e. TL(x) = E ◦ τTQ(x), iff the coordinates(q, v/q̇, v̇)
satisfy

q̇ = v (16a)

∂θv

∂q
q̇ + ∂θv

∂v
v̇ = θq(q, v). (16b)

E is then the submanifold ofT TQ (T 2Q) locally described by equations (16)
(equation (16b)).

Now let c ≡ (q, v) (with q = q(t), v = v(t)) be a smooth curve in the given coordinate
domain onTQ, and ċ = (q, v/q̇, v̇) (with q̇ = dq/dt, v̇ = dv/dt) its tangent lifting.

From the above description ofE, it follows thatc is an integral curve ofE, i.e. Im ċ ⊂
E, iff the functions

(
q(t), v(t)

)
satisfy the first-order implicit differential equations (16).

As a consequence, the projectionγ := τQ ◦ c will be represented by functionsq(t)
satisfying equations (15), which then also locally characterize the base integral curves ofE.

We remark that equations (15) and (16) locally confirm that the tangent liftingγ 7→ γ̇

maps base integral curves onto integral curves and, as a mapping between such classes of
curves, is invertible, its two-sided inverse being the projectionc 7→ τQ ◦ c.

The same local description, of course, will be obtained from the coordinate expression
of the presymplectic formalism.

Standard computations show thatω := −diSθ has a block-matrix of components given
by 

∂θv

∂q
−
(
∂θv

∂q

)T
∂θv

∂v

−
(
∂θv

∂v

)T
0

 .
As a consequence, for anyx ≡ (q, v/q̇, v̇) ∈ T TQ, one has

(ixω)q =
(
∂θv

∂q

)T
q̇ − ∂θv

∂q
q̇ − ∂θv

∂v
v̇

(ixω)v =
(
∂θv

∂v

)T
q̇.

Moreover, fromη := di1θ − θ , one obtains(
η
(
τ(x)

))
q
=
(
∂θv

∂q

)T
v − θq(q, v)

(
η
(
τ(x)

))
v
=
(
∂θv

∂v

)T
v.

Hence (
η
(
τ(x)

)− ixω)q = (∂θv∂q
)T
(v − q̇)+ ∂θv

∂q
q̇ + ∂θv

∂v
v̇ − θq(q, v)

(
η
(
τ(x)

)− ixω)v = (∂θv∂v
)T
(v − q̇).

So x ∈ E, i.e. x ∈ T 2Q andη
(
τ(x)

)− ixω = 0, iff the coordinates(q, v/q̇, v̇) satisfy
equations (16).
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Note that, ifγ is a smooth curve inQ represented by functionsq = q(t), thenη◦γ̇−iγ̈ ω
is a section ofV 0τQ along γ̇ admitting components given by

(
dθv(q, q̇)/dt − θq(q, q̇), 0

)
.

As a consequence, we reobtain thatγ is a base integral curve ofE (i.e. Im γ̈ ⊂ E or,
equivalently,η ◦ γ̇ − iγ̈ ω = 0) iff the functionsq(t) satisfy equations (15).

(iii). If θ = dL+ F with F horizontal (and thenFv = 0), one hasθq = ∂L/∂q + Fq and
θv = ∂L/∂v.

Equations (14), (16) and (15) then read

p = ∂L

∂v
ṗ = ∂L

∂q
+ Fq

q̇ = v
[
∂

∂q

(
∂L

∂v

)]
q̇ +

[
∂

∂v

(
∂L

∂v

)]
v̇ − ∂L

∂q
= Fq(q, v)

d

dt

(
∂L

∂q̇

)
− ∂L
∂q
= Fq(q, q̇)

which are the familiar coordinate Lagrange equations meant as local implicit differential
equations onT ∗Q, TQ andQ, respectively.
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[5] de Léon M and Rodrigues P R 1989Methods of Differential Geometry in Analytical Mechanics(Amsterdam:

North-Holland)
[6] de Ritis R, Marmo G, Platania G and Scudellaro P 1983 Inverse problem in classical mechanics: dissipative

systemsInt. J. Theor. Phys.22 931–46
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